Welcome to the ERA-AGE summary Guide to Good Practice in Programme Management. This summary is essentially a shortened version of the recently published guide dated 25th January 2007. It is intended to identify the main principles of good practice in research programme management but does not discuss the main issues in detail. A fuller discussion will be found in the main guide which can be obtained via the ERA-AGE website (www.shef.ac.uk/era-age).

The principle feature of the main guide is that it attempts to be a consensus document drawn from the recommendations from ERA-AGE workshops for programme managers. The guide is intended primarily for those engaged in different aspects of research programme management and, in particular, those planning a new programme. It does not claim to be definitive but, on the contrary, it is offered as a working document that can be augmented and improved as new information emerges. The guide addresses the main issues, each of which is defined and explained, followed by the recommendations for good practice.

I commend this summary guide to you and in the collaborative spirit of ERA-AGE I would like to invite you to forward any suggestions and recommendations on the main guide to ERA-AGE by using the following email address: r.n.saddler@sheffield.ac.uk

Yours sincerely

Professor Alan Walker
Director
ERA-AGE
HOW DO WE DEFINE A RESEARCH PROGRAMME?

A research programme is usually composed of a number of research projects which are focused on a defined subject area or set of issues, scheduled to run for a set period of time and that have some degree of coordinated management. Research programmes usually include a call for proposals which is announced publicly and may be open to all or restricted to certain disciplines or groups. The funding of proposals is usually based on competition.

A research programme is an important tool for the development of research, science policy, research funding and cooperation among different actors in its specific field. Research programmes have both general scientific and policy objectives and more specific goals that are unique to each programme.

A research programme is expected to meet general requirements. It should:

• have a well defined focus,
• be sufficiently broad, and
• have a long enough life span to meet its aims.

A research programme should provide added value in comparison to individual projects. Research programmes differ from each other in terms of their starting-points, objectives and methods.

The usual life cycle of a programme is as follows:

• Preparation
• Commissioning
• Operation
• Outcomes
 - science/knowledge base
 - policy proposals
 - practice based solutions
• Evaluation.

STANDARD AND GENERALLY AGREED PRACTICES

Even though there are differences between research programmes, standard common practices can still be identified across ageing research programmes for example in preparation, commissioning and operation.

A useful way of monitoring the progress of projects is to endorse the development of regular written progress reports. The frequency of reports varies among research programmes, but generally once a year is seen as sufficient although interim reports may be required depending on the length of the programme.

In many programmes, it is common practice for project leaders to write annual progress reports about ongoing activities and interim results of the projects. See for example, The Finnish Research Programme on Ageing, the UK GO Programme, the Dutch Successful Ageing Programme, the Italian Ministry of Health’s targeted research programme – ‘ricerca finalizzata’ and the Italian Ministry for Education universities and Research targeted programme on ageing – ‘Progetto finalizzato invecchiamento’.

The Processes of Ageing Programme in Luxembourg organises project follow-up on the basis of intermediary reports which are submitted on an annual basis. They are checked by various bodies including the scientific council for scientific content and by the secretariat and the board of administrators for advance payments and budget review reports.

In addition to annual and interim progress reports, Germany’s Health Research Programme of the BMBF hosts status seminars, network meetings or workshops that are attended by scientific officers from funding agencies.

A discussion of the benefits, challenges and limitations of this approach can be found in the main guide.
WHAT IS PROGRAMME EVALUATION?

Programme evaluation is a systematic (and as objective as possible) examination of a planned, ongoing or completed programme. It aims to answer specific management questions, judge the overall value of an endeavour and identify lessons learned to improve future actions, planning and decision-making.

An evaluation should provide information that is credible and useful, offering concrete lessons to help partners and funding agencies make decisions. A programme-level evaluation provides a detailed analysis of the strengths and weaknesses of a programme, and helps to determine the impact and value of the investment.

WHY DO WE EVALUATE?

We evaluate in order to know what steps to take next or to find out if a new type of research could emerge from the previous one. It is important to clearly articulate the purpose of evaluation and it is advisable to know beforehand if the aim of the evaluation is to obtain more money or to encourage a new type of research. Evaluation provides a basis for accountability, as well as useful information for the public.

Research programmes are evaluated in relation to the starting points of the programme, its objectives and scope of funding. The stages of the evaluation include:

- definition of objectives
- planning and budgeting
- carrying out the evaluation
- reporting
- utilisation of evaluation results.

It is important to note that evaluation requires time, money, resources and planning. Evaluation can be conducted by a private or public sector organisation, funding agency or a ministry.

STANDARD AND GENERALLY AGREED PRACTICES

Evaluation is a widely used practice across ageing research programmes. However, not all programmes carry out an evaluation and differences exist in regard to the frequency and methods of evaluation. Programmes are often evaluated during their life span and/or when the funding period has ended.

Examples of good practices can be found in the main guide.
Dissemination and Implementation of the Programme and Project Findings

WHAT IS DISSEMINATION?
Dissemination processes can vary between ageing research programmes but all programmes develop strategies for getting their results out into the public domain. Three levels of knowledge dispersal can be identified:

- **Communication** – usually takes place in the early stages of a programme and project development involving the distribution of information concerning programme objectives and research being undertaken.
- **Dissemination** – takes place once research results begin to emerge. Dissemination may involve different approaches to sharing knowledge from standard publication of journal articles and conference papers to non-standard forms such as the running of public access workshops, user or policy targeted publications.
- **Implementation** – only takes place once the research is complete and the product/model is clearly developed. Implementation ‘involves processes where the results from projects are put into practice in terms of developing policy and outcomes’. This can be facilitated by developing partnerships between the research projects, the programme and policymakers, users, service providers etc, who will work together to implement the product.

WHO ARE YOU DISSEMINATING TO?
It is important to be clear about the target audiences or end users when designing a dissemination strategy. A target audience may include, for example:

- Policy makers
- NGOs and lobby groups
- Service providers
- Front line professionals
- The media
- The public
- Other scientists
- Industry

…. and develop your strategy accordingly.

It is also important to bear in mind that programme dissemination and implementation plans need to build in time and resources for activities to have an impact. It is therefore crucial that researchers develop skills necessary to achieve effective implementation of research findings and recommendations. Skills for dissemination are not necessarily the same as those used for research, which in the context of competing pressures on researchers, can pose problems for dissemination. Programmes may offer systems of support that will facilitate projects to disseminate and implement findings into the public domain.

STANDARD AND GENERALLY AGREED PRACTICES
Programme level dissemination and implementation plans
Ageing research programmes are required to develop a dissemination plan and/or a strategy for implementing results. This ensures that dissemination is developed as an integral part of the programme and that the programme evolves with these objectives in mind. In many cases where dissemination is high on the programme agenda, the links to the policy and user communities as well as services and industry are made from the onset of the programme which increases the connections between science and society.

In the GO and New Dynamics of Ageing Programmes in the UK, and the programmes run by FAS in Sweden and ZonMw in the Netherlands, programme dissemination plans are followed through by requesting information, in calls for project funding, on how results will be disseminated.

See the main guide for examples of good practices.
WHY IS COLLABORATION BETWEEN DISCIPLINES IMPORTANT?
Growing older affects all aspects of human life - biological and physiological, psychological, social, economic and environmental. This means that no single discipline has all the answers and the quality of life of older people can only be improved through the accumulation of knowledge from multiple disciplinary perspectives and interdisciplinary learning.

What form does it take?
The collaboration between disciplines may take various forms including:

- **Multidisciplinarity** – which is more or less parallel activity of two or more disciplines engaged in one project
- **Interdisciplinarity** – where research projects involve more than one disciplinary perspective and seek to integrate these perspectives in the research process. This can be through building an interdisciplinary team or through the development of interdisciplinary researchers
- **Transdisciplinarity** – this is often regarded as the highest level of collaboration as it involves the integration of different disciplines’ views and methods, giving rise to a completely new integrated approach including the development of new theories or new methods.

WHAT ARE THE BENEFITS OF INTERDISCIPLINARITY?
- Cross disciplinary learning
- Increased and richer understanding of the ageing process, especially quality of life in old age
- Developing an integrated view can help contribute to the overall quality of the research.

WHAT ARE THE OBSTACLES TO RESEARCH PROGRAMMES DEVELOPING INTERDISCIPLINARY COLLABORATION?
All countries have their own unique research cultures and their own specific constraints and opportunities to the building of interdisciplinary research. However some general issues can be identified and are worthy of consideration.

- Separation of research into disciplinary departments can act as a disincentive to interdisciplinary research collaboration
- Lack of rewards, outputs and career structures for interdisciplinary research such as interdisciplinary journals, funding opportunities and job opportunities
- Differences in the scientific paradigms, cultures and languages across the disciplines
- Restrictions in funding structures which is a necessary prerequisite for carrying out research.

Some specific national examples are:
In the UK the periodic Research Assessment Exercise does not take sufficient account of interdisciplinary research and lower research credits due to the multiple disciplinary authorship of publications can be a problem. However this is to some extent offset by the funding agencies encouraging interdisciplinary collaboration.

In Romania, funding for research is limited which discourages funders from awarding funds to other disciplinary fields outside of those traditionally linked to the programme. This is being countered by the development of specific calls for interdisciplinary projects.

Some countries, such as Austria, have had some good experiences in developing interdisciplinary collaboration with research programmes on ageing. This enables interdisciplinary collaboration to be performed over the mid or even long-term which facilitates a form of continuous communication and development that is difficult to achieve through the funding of single projects.

Having reviewed the constraints this guide now focuses upon what is achievable within research programme management by reviewing some useful examples of standard and good practices in this field.
STANDARD AND GENERALLY AGREED PRACTICES

Multidisciplinarity and interdisciplinarity are standard and generally agreed practices among many ageing research programmes.

Multidisciplinary collaboration on the programme level can involve:

• Regular seminars to encourage networking and strengthen gerontological expertise
• Thematic workshops to facilitate dialogue between disciplines
• Joint cross disciplinary researcher training
• Joint publications and sessions in national and international conferences.

Interdisciplinary programmes are set up to fund interdisciplinary projects that submit commonly presented proposals combining e.g. engineering and social sciences; sociologists and anthropologists; medical and social/behaviour sciences and so on. Other interdisciplinary programmes combine basic and clinical sciences. Some programmes also request that projects stipulate their interdisciplinary approach as criteria for funding.

A discussion of the good practices can be found in the main guide.
WHAT IS USER INVOLVEMENT?
The involvement of user groups in research necessitates a broad definition but at its most basic it refers to the processes by which individuals or organisations play a role in the research programme or project outside of their traditional role as research subjects.

When developing user involvement three key questions must first be considered:
1. What is the primary purpose for involving users in the programme?
2. Which types of users are important to involve in the programme?
3. What levels of the programme planning and implementation should users be involved in?

WHY CONSIDER INVOLVING USERS?
An important value gained from involving users is that of enabling programmes and their projects to develop research issues which are of importance to older people and their representatives. The key benefits to involving users is that it enables research programmes and their projects to be relevant to the ‘real world’ and to develop policy relevant research that contributes to extending the quality of life of older people. A further key advantage concerns important links with dissemination. By involving target groups of research findings from the onset in programme planning and design, the implementation of results and the dissemination of findings may reach a broader audience than can be achieved by the programme and its scientists alone.

However, the involvement of users gives rise to significant challenges. The approach generates additional research costs and requires considerable resources and time for establishing support systems and structures for user involvement.

The Older People’s Programme in the UK came the nearest to achieving this aim, by designing and implementing the programme in partnership with older people, who formed the majority of the programme committee members.

Clearly the above outlined good practice may not be appropriate for every programme but it provides an interesting example of how research programmes can be run in partnership with users.

WHICH USER GROUPS SHOULD BE INVOLVED?
Ageing research programmes can involve a broad spectrum of user groups ranging from:
- Older people
- Representatives of older people such as non-governmental organisations (NGOs)
- Policy-makers
- Research funders
- Service providers
- Industry/produce producer representatives
- Other researchers
- Patient groups
- Professionals such as health care workers, social workers etc.

STANDARD AND GENERALLY AGREED PRACTICES
It is expected that all ageing research programmes will involve users at some stage as appropriate to the objectives of the programme.

One useful and effective way of involving users concerns the developmental and planning stages of a programme.

Many research programmes find it useful to involve policy makers and funders at this stage. The UK Ageing Research Programme also involved older people and their representatives at this stage.

The Netherlands and Sweden provide interesting examples which may be considered as examples of good practice of how to involve users in programme development.

In Sweden the government appointed representatives of research user groups to the board of FAS where decisions about programme development are made. These representatives also reviewed proposals in review committees.

The above practice is considered useful since research users were able to give their views on the social relevance of projects. One pitfall associated with this practice relates to the issue that there was no separation of user groups involved in planning programmes and those involved in the assessment of projects. It may be useful to consider this issue when planning how to involve users.

In the Netherlands, ZonMw established an advisory board where representatives from older people’s associations and older people discussed the planning of programmes on ageing.

This approach builds in the views of users from the onset of research programme planning. The concerns of older people and their representatives may subsequently help to inform the development of research.

See the main guide for a discussion of good practices.
International Collaboration

WHAT IS INTERNATIONAL COLLABORATION?

International collaboration is an activity involving agencies and institutions based in different countries who become collectively engaged in a common programme/projects with various objectives including maximising mutual benefit and promoting comparative research.

TO WHAT EXTENT DO AGEING RESEARCH PROGRAMMES COLLABORATE WITH EACH OTHER?

One of the reasons for creating an ERA-NET in the field of ageing research is to address the absence of collaboration between Europe’s ageing research programmes. Not many examples of collaboration between ageing research programmes exist but there are a few interesting initiatives worthy of mentioning here.

Programme level examples

In some countries programmes are interacting, for example links between the Academy of Finland and the UK Research Councils (ESRC, EPSRC, BBSRC, MRC and AHRC) have been established. (In the field of basic science there is a jointly funded research programme between Germany and Israel.)

Project level examples

There are few examples of programmes which develop links between their projects and those of other ageing research programmes. Funding the travel of national researchers is the most supported form of international cooperation by programmes.

In the UK, the EQUAL programme developed an international dimension, for example the housing-related research links has strong links with other work in Europe and the Smart Homes project with work particularly in the US. Inclusive design research has enabled stronger links with Japan and more generally world-wide and the bio-engineering aspects of rehabilitation research has engendered valuable links with Canada. Similarly some GO programme projects had strong links with other countries.

The French programme ‘Ageing in the Work Place’ had extensive international collaboration and many of its projects collaborated internationally with Canadian, Portuguese and Belgian institutions. One of the projects participated in a study with the World Health Organisation.

A prevailing view of funding international collaboration is that it is potentially expensive unless it is specifically targeted. Consequently, many funding agencies/research councils do not support it.

Currently there is no international funding cooperation between ageing research programmes in Europe. The ERA-AGE project is the only form of collaboration that exists at present. On the other hand, international collaboration is well established on an institutional basis.

Institutions like FAS, the Academy of Finland, Institute for Biomedical Research and Vienna Institute of Demography in Austria have extensive international collaboration.

The Swedish Council for Working Life and Social Research (FAS) is a member of the European Science Foundation (ESF) and participates in a number of different areas, for example the European Social Survey which is a comparative study of social conditions and perceptions in several European countries and participates in the ESF Programme Quantitative methods in the Social Sciences. FAS takes a part in the Luxembourg Income Study which is a comparative database covering income distribution in different countries, launched in the early 1980’s.

Some large scale collaborations have also been developed by the Department of Health in the UK with the US Institute of Ageing on the English Longitudinal Survey of ageing (ELSA).

The Institute of Biomedical Ageing Research and the Vienna Institute of Demography in Austria are involved in many networks, for example, Immunology and Ageing in Europe and European collaborative projects.

A discussion of the benefits, challenges and limitation of this approach can be found in the main guide.
ABOUT RESEARCH ETHICS

Good quality research is undertaken in accordance with a set of recognised ethical principles which aim to protect the dignity, rights, safety and well being of research participants at all times. Participants may be involved:

- directly in research activities through physical invasive (e.g. surgery) and/or non-invasive research such as interviews, questionnaires, observational research taking an active or passive role
- indirectly in research activities through the provision of personal data and/or tissue
- on behalf of others (e.g. parents, guardians, carers, supervisors in controlled environments such as prisons).

From the outset, the development of research programmes must be guided by relevant ethical procedures and protocols and the final document reviewed, approved (by an ethics review system/procedure) and adhered to throughout the duration of the programme. Research programmes ought to have appropriate strategies in place to encourage partners and associated researchers to take responsibility for their own ethical practice.

WHAT ETHICAL GUIDELINES AND/OR REVIEW SYSTEM SHOULD PROGRAMME MANAGERS USE?

Ethical guidelines and procedures are endorsed by various institutions through which ethical advice and/or review may be requested:

(i) Research programmes that involve human participants in social research outside of health related disciplines may first approach academic institutions for ethical advice, review and approval such as:

- University-based Research Ethics Office and / or Committee
- National social research organisations such as the British Sociological Association (http://www.britsoc.co.uk/)
- Funders of social research such as the Economic and Social Research Council in Britain (http://www.esrcsocietytoday.ac.uk/ESRCInfoCentre/index.aspx)

(ii) For medical research involving human subjects, leaders of research programmes may seek advice and/or approval from for example:

- Declaration of Helsinki (developed by the World Medical Association) which provides ethical principles and guidance to physicians and other participants involving human subjects (www.wma.net/e/policy/b3.htm)
- National health and social care ethical regulations such as the NHS Central Office for Research Ethics Committees (COREC) in Britain (http://www.corec.org.uk/applicants/index.htm)
- Funders of research such as the Medical Research Council in Britain (http://www.mrc.ac.uk/index/current-research/funding-governance.htm)

STANDARD AND GENERALLY AGREED PRACTICES

Though ethical principles are endorsed differently from one institution to another, a set of standard generally recognized and agreed ethical principles can be identified when involving human subjects:

- Where a conflict of interest exists, the interests of the subjects of research prevail over those of science and society. This principle of involving participants is enshrined in the Council of Europe’s “Convention for the protection of Human Rights and Dignity of the Human Being with regard to the Application of Biology and Medicine: Convention on Human Rights and Biomedicine (http://www.conventions.coe.int/Treaty/en/Treaties/Html/168.htm)
- Research must be generalisable having the potential to generate scientific understanding that may be the basis of improvements for human health and well being.
- Research can only proceed if voluntary informed consent has been obtained from participants who are invited to participate in the research activity in question.
- Appropriate ethical approval must be sought by an independent review body for the research proposal.

For a fuller discussion on good practices please access the main ERA-AGE Guide to Good Practice in Programme Management by visiting our website (www.shef.ac.uk/era-age).

The ERA-AGE partnership would like to thank all colleagues who have contributed toward the development of the main and summary guide.

A comprehensive list of contributors and associated organisations/countries can be found within the main guide.
The University of Sheffield ERA-AGE Co-ordination Team

ERA-AGE contact address:
Rita Saddler
Project Secretary
Department of Sociological Studies
The University of Sheffield
Elmfield Building
Sheffield
S10 2TU, UK
Tel: +44 (0) 114 222 6458/6418
Fax: +44 (0) 114 222 6492
Email: r.n.saddler@shef.ac.uk
www.shef.ac.uk/era-age